The genetic basis of resistance to anticoagulants in rodents.

نویسندگان

  • Hans-Joachim Pelz
  • Simone Rost
  • Mirja Hünerberg
  • Andreas Fregin
  • Ann-Charlotte Heiberg
  • Kristof Baert
  • Alan D MacNicoll
  • Colin V Prescott
  • Anne-Sophie Walker
  • Johannes Oldenburg
  • Clemens R Müller
چکیده

Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for >50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warfarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RRAC Seminar: ADVANCES IN ANTICOAGULANT RODENTICIDE RESISTANCE RESEARCH

Knowledge on anticoagulant resistance has made considerable progress during recent years, due in particular to the investigation of the genetic basis of the enzyme-complex involved, and the introduction of new test methods. The Rodenticide Resistance Action Committee (RRAC) of CropLife International therefore invited leading scientists from six countries to a seminar with the objective to revie...

متن کامل

Vergleichende Genetik der Warfarinresistanz

Warfarin and other 4-hydroxycoumarinbased oral anticoagulants targeting vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) are administered to humans, mice and rats with different purposes in mind – to act as pesticides in high-dosage baits for killing rodents, but also to save lives when administered in low dosages as antithrombotic drugs in humans. However, high-dosage warfarin used t...

متن کامل

Anticoagulant resistance in rodents

Current issues in rodenticide anticoagulant resistance testing are reviewed. Research and management issues for New Zealand agencies include: 1. Assessing and monitoring the spread of resistance. 2. Standardising and improving resistance-testing techniques. 3. Identifying from the range of tests that have been developed for assessing rodenticide resistance which is the best to use. 4. Developin...

متن کامل

RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line

Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...

متن کامل

The Role of Epigenetics in Cancer Drug Resistance

Cancer is caused by aberrant genetic and epigenetic changes in genes expression. DNA methylation, histone modification, and microRNAs gene deregulation are the most known epigenetic changes in different stages of cancer. Since every tumor has its own specific epigenome, any abnormal pattern is a potential biomarker for classification of different types of tumors. Despite, tumorigenesis, abnorma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 170 4  شماره 

صفحات  -

تاریخ انتشار 2005